
stdio.h – Standard I/O Library
An Advanced Introduction to

Unix/C Programming

John Dempsey
COMP-232 Programming Languages

California State University, Channel Islands

1

C Reserved Keywords

COMP-232 Programming Languages 2

asm default for restrict switch

auto do goto return typedef

break double if short union

case else inline signed unsigned

char enum int sizeof void

const extern long static volatile

continue float register struct while

Library Calls

What is a library call?

Can you write C programs without using library calls?

COMP-232 Programming Languages 3

C Library Functions

• To call a library function, an include file is necessary.

• Library calls make it easier to write programs by providing a function
you can call to perform an operation.

• Library calls are defined in Section 3 of the manual pages.

COMP-232 Programming Languages 4

/usr/include Header Files
• There are a large number of ANSI Standard Libraries defined.

Function prototypes can be found in the following /usr/include files:

COMP-232 Programming Languages 5

assert.h
ctype.h
errno.h
float.h
limits.h
locale.h
math.h
setjmp.h

signal.h
stdarg.h
stddef.h
stdio.h 
stdlib.h
string.h
time.h

stdio.h Library Calls

• stdio.h supports library function calls for file input and output.

• To use, add: #include <stdio.h>

• #include is a preprocessor statement that copies the stdio.h file into
your program.

• The ‘<‘ and ‘>’ symbols specify that the stdio.h file is found in the
/usr/include directory.

COMP-232 Programming Languages 6

/usr/include/stdio.h

john@oho:~$ ls -l /usr/include/stdio.h

-rw-r--r-- 1 root root 29950 Apr 6 18:24 /usr/include/stdio.h

john@oho:~$ wc -l /usr/include/stdio.h

875 /usr/include/stdio.h

john@oho:~$ head -3 /usr/include/stdio.h

/* Define ISO C stdio on top of C++ iostreams.

 Copyright (C) 1991-2020 Free Software Foundation, Inc.

 This file is part of the GNU C Library.

COMP-232 Programming Languages 7

man Command

COMP-232 Programming Languages 8

ABORT(3) Linux Programmer's Manual ABORT(3)

NAME
 abort - cause abnormal process termination

SYNOPSIS
 #include <stdlib.h>

 void abort(void);

DESCRIPTION
 The abort() function first unblocks the SIGABRT signal, and then raises that
 signal for the calling process (as though raise(3) was called).

RETURN VALUE
 The abort() function never returns.

% man abort

Function Prototypes

• Function prototypes define the calling interface to a library
function.

• Specifies the arguments to call the function.

• Specifies what is returned by the function.

• Some functions may set errno (or t_errno), which can be
used to help determine why the function failed.

COMP-232 Programming Languages 9

Function Prototype Examples

Let’s understand the syntax used for function prototypes.

void abort(void);

1. There are no parameters to the function.

2. The function does not return any values.

COMP-232 Programming Languages 10

Function Prototype Examples

int isupper(int c);

1. Input parameter is an integer value.

2. Function returns a non-zero value if TRUE or 0 if FALSE.

Is a non-zero value always 1?

COMP-232 Programming Languages 11

Function Prototypes Example
john@oho:~$ cat isupper.c
#include <stdio.h>
#include <ctype.h>
void main()
{
 printf("isupper('A') = %d\n", isupper('A'));
 printf("isupper('B') = %d\n", isupper('B'));
 printf("isupper('~') = %d\n", isupper('~'));
}
john@oho:~$ gcc isupper.c; a.out
isupper('A') = 256  isupper returns 256 instead of 1.

isupper('B') = 256
isupper('~') = 0  if not upper case character, 0 is always returned.

COMP-232 Programming Languages 12

Function Prototype Example

char *strcpy(char *dest, const char *src);

1. src is a constant and its value does not change after the call.

2. dest gets modified after the call.

3. Function returns a pointer to the dest string.

COMP-232 Programming Languages 13

Function Prototype Example

FILE *fopen(const char *pathname, const char *mode);

1. There are two constant inputs, pathname and mode, which do not
change after the function is called.

2. Both are character pointers.

3. pathname can be hard coded string, e.g., “/tmp/temp.txt”, a
pointer to a string, or can be an array.

4. mode can be a constant like “r”, “w+”, and “a”.

5. fopen returns a file pointer, which can be used in later calls.

6. But if a NULL file pointer is returned, file is not opened and errno is
set to indicate what error occurred.

COMP-232 Programming Languages 14

Function Prototype Example
void *malloc(size_t size);
1. malloc allocates size bytes of memory. But why use size_t instead of just int?
2. malloc returns a void pointer but without any associated structure for the actual allocated memory.

3. So to specify the format of the allocated memory, you can use:

typedef enum {

 INT_TYPE,  Integer type (0)

 FLOAT_TYPE  Float type (1)

} NUM_TYPE;

typedef struct number {

 NUM_TYPE type;

 double value;

} NUMBER;  NUMBER is a typedef.

NUMBER *result = malloc(sizeof(NUMBER));  NUMBER defines the structure of the allocated

 memory pointed to by the result pointer.

COMP-232 Programming Languages 15

But why use size_t instead of just int?
size_t is guaranteed to be set to the largest size the host can support.

For example, if the compiler runs on a 32-bit system, size_t can be defined as
an unsigned int, i.e., 4 bytes.

But on a 64-bit system, size_t would be defined as an unsigned long long,
i.e., 8 bytes.

Memory allocation functions, like calloc, malloc, and sizeof, use size_t
instead of an int.

This supports more portable code when compiling on different systems.

COMP-232 Programming Languages 16

Standard I/O Streams
There are three standard I/O streams opened when a program runs,
which are:

stdin - Standard Input Stream for reading (e.g., from keyboard).
stdout - Standard Output Stream for writing to user’s screen.
stderr - Standard Error Stream for reporting errors.

void main() {
 fclose(stdin);  stdin, stdout, and stderr are open by default
 fclose(stdout);  But some production code closes these and
 fclose(stderr);  writes to log files instead.
 …

COMP-232 Programming Languages 17

#include <stdio.h>
• Adding #include <stdio.h> as one of your first lines in your C program lets you

call any of the supported functions defined by stdio.h.

COMP-232 Programming Languages 18

john@oho:~$ cat c.c

int main() {

 printf("Hello world.\n");

}

john@oho:~$ gcc c.c

c.c: In function ‘main’:

c.c:3:5: warning: implicit declaration of function ‘printf’

[-Wimplicit-function-declaration]

 3 | printf("Hello world.\n");

 | ^~~~~~

c.c:3:5: warning: incompatible implicit declaration of built-

in function ‘printf’

c.c:1:1: note: include ‘<stdio.h>’ or provide a declaration of

‘printf’

 +++ |+#include <stdio.h>

 1 | int main()

john@oho:~$ a.out

Hello world.

john@oho:~$ cat c.c

#include <stdio.h>

int main() {

 printf("Hello world.\n");

}

john@oho:~$ gcc c.c

john@oho:~$ a.out

Hello world.

stdio.h

COMP-232 Programming Languages 19

stdio.h Library Functions

Function Function Prototype Description

fclose int fclose(FILE *stream); Closes file.

feof int feof(FILE *stream); Checks for end of file indicator.

fflush int fflush(FILE *stream); Flush a file stream.

fgetc int fgetc(FILE *stream); Reads the next character in stream and returns
unsigned char as an int or EOF on end of file.

fgetpos int fgetpos(FILE *, fpos_t *); Gets current file position.

fgets char *fgets(char *s, int size, FILE *stream); Reads in at most one less than size characters from
stream. Stores them into the buffer pointed to by s.

fopen FILE *fopen(const char *pathname, const char *mode); Opens file named in pathname and assigns stream.

fprintf int fprintf(FILE *stream, const char *format, …); Write formatted output.

fputc int fputc(int c, FILE *stream); Write character c as unsigned char to stream.

fputs int fputs(const char *s, FILE *stream); Writes string s to stream without null byte \0.

stdio.h

COMP-232 Programming Languages 20

stdio.h Library Functions

Function Function Prototype Description

fread size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream);

Reads nmemb items of data, each size bytes long,
from stream. Stores at location pointed to by ptr.

freopen FILE *freopen(const char *pathname, const char
*mode, FILE *stream);

Opens pathname and associates stream pointed to
by stream. Original stream is closed, if it exists.

fscanf int fscanf(FILE *stream, const char *format, …); Reads input from the stream pointer stream.

fseek int fseek(FILE *stream, long offset, int whence); Sets file position for stream pointed to by stream.

fsetpos int fsetpos(FILE *stream, const fpos_t *pos); Sets file position for stream pointed to by stream.

ftell long ftell(FILE *stream); Returns file position in stream pointed to by stream.

fwrite size_t fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream);

Write nmemb items of data, each size bytes long, to
stream, data pointed to by ptr.

getc int getc(FILE *stream); Reads next character from stream.

getchar int getchar(void); Equivalent to getc(stdin).

stdio.h

COMP-232 Programming Languages 21

stdio.h Library Functions

Function Function Prototype Description

gets char *gets(char *s); Get a string from standard input. (Deprecated)

printf printf(const char *format, …); Prints formatted output to stdout.

putc int putc(int c, FILE *stream); Writes character to stream.

putchar int putchar(int c); Equivalent to putc(c, stdout).

puts int puts(const char *s); Writes string s and newline character to stdout.

remove int remove(const char *pathname); Deletes named file or directory from filesystem.

rewind void rewind(FILE *stream); Sets file position to the beginning of file.

scanf int scanf(const char *format, …); Reads input from stdin.

stdio.h

COMP-232 Programming Languages 22

stdio.h Library Functions

Function Function Prototype Description

sprintf int sprintf(char *str, const char *format, …); Write to the character string str.

srand int srand(void); Pseudo-random number generator.

sscanf int sscanf(const char *str, const char *format, …); Reads input from character string pointed to by str.

tmpfile FILE *tmpfile(void); Create a temporary file in /tmp with r/w. File
deleted when closed or program terminates.

ungetc int ungetc(int c, FILE *stream); Pushes c back to stream. Available for future reads.

errno.h – fopen RETURN VALUES
NAME

 fopen - open a stream

SYNOPSIS

 #include <stdio.h>

 FILE *fopen(const char *filename, const char *mode);

DESCRIPTION

 The fopen() function opens the file whose pathname is the string pointed to by filename, and

 associates a stream with it.

RETURN VALUES

 Upon successful completion, fopen() returns a pointer to the object controlling the stream.
Otherwise, a null pointer is returned and errno is set to indicate the error.

COMP-232 Programming Languages 23

errno Example
 // Open file for writing.

 if ((fdout = fopen(filename_out, "w")) == NULL) {

 switch (errno) {

 case EACCES:

 printf(" ERROR: EACCES seen. Check file permissions to file %s.\n", filename_out);

 break;

 case EINTR:

 printf(" ERROR: EINTR seen. A signal was caught during execution of fopen().\n");

 break;

 case ENOENT:

 printf(" ERROR: ENOENT seen. The file %s does not exist.\n", filename_out);

 break;

 }

 printf("icopy will now exit.\n");

 exit(1);

 }

COMP-232 Programming Languages 24

errno.h
ERRORS

The fopen() function will fail if:

• EACCES Search permission is denied on a component of the path prefix, or the file exists and the permissions specified by

 mode are denied, or the file does not exist and write permission is denied for the parent directory of the file to be
 created.

• EINTR A signal was caught during the execution of fopen().

• EISDIR The named file is a directory and mode requires write access.

• ELOOP Too many symbolic links were encountered in resolving path.

• EMFILE There are {OPEN_MAX} file descriptors currently open in the calling process.

• ENAMETOOLONG The length of the filename exceeds PATH_MAX or a pathname component is longer than NAME_MAX.

• ENFILE The maximum allowable number of files is currently open in the system.

• ENOENT A component of filename does not name an existing file or filename is an empty string.

COMP-232 Programming Languages 25

errno.h – Checking errno

COMP-232 Programming Languages 26

if ((fd=fopen(myfile,"a+")) == NULL) {
 printf(“----> ERROR: Cannot open file %s.\n”, myfile);
 switch (errno) {
 case EACCES: fprintf(stderr, "----> ERROR: errno returns EACCES.\n"); break;
 case EINTR: fprintf(stderr, "----> ERROR: errno returns EINTR.\n"); break;
 case EISDIR: fprintf(stderr, "----> ERROR: errno returns EISDIR.\n"); break;
 case ELOOP: fprintf(stderr, "----> ERROR: errno returns ELOOP.\n"); break;
 case EMFILE: fprintf(stderr, "----> ERROR: errno returns EMFILE.\n"); break;
 case ENAMETOOLONG: fprintf(stderr, "----> ERROR: errno returns ENAMETOOLONG.\n"); break;
 case ENFILE: fprintf(stderr, "----> ERROR: errno returns ENFILE.\n"); break;
 case ENOENT: fprintf(stderr, "----> ERROR: errno returns ENOENT.\n"); break;
 case ENOSPC: fprintf(stderr, "----> ERROR: errno returns ENOSPC.\n"); break;
 default: fprintf(stderr, "----> ERROR: errno returns undefined value.\n"); break;
 }
 printf(“Program will now exit.\n”);
 exit(1);
}

fseek
john@oho:~/VR$ man fseek | cat
FSEEK(3) Linux Programmer's Manual FSEEK(3)

NAME
 fgetpos, fseek, fsetpos, ftell, rewind - reposition a stream

SYNOPSIS
 #include <stdio.h>
 int fseek(FILE *stream, long offset, int whence);
 long ftell(FILE *stream);
 void rewind(FILE *stream);
 int fgetpos(FILE *stream, fpos_t *pos);
 int fsetpos(FILE *stream, const fpos_t *pos);

DESCRIPTION
 The fseek() function sets the file position indicator for the stream pointed to by stream. The new position, measured in
 bytes, is obtained by adding offset bytes to the position specified by whence. If whence is set to SEEK_SET, SEEK_CUR, or
 SEEK_END, the offset is relative to the start of the file, the current position indicator, or end-of-file, respectively. A
 successful call to the fseek() function clears the end-of-file indicator for the stream and undoes any effects of the
 ungetc(3) function on the same stream.

 The ftell() function obtains the current value of the file position indicator for the stream pointed to by stream.

 The rewind() function sets the file position indicator for the stream pointed to by stream to the beginning of the file. It
 is equivalent to: (void) fseek(stream, 0L, SEEK_SET)

COMP-232 Programming Languages 27

stdio.h – Using fputs, fgets, and fgetc

COMP-232 Programming Languages 28

#include <stdio.h>
int main()
{
 FILE *fd;
 char string[50];

 if ((fd = fopen("temp.txt", "w+")) == NULL) {
 printf("ERROR: Cannot open temp.txt for write.\n");
 return 1;
 }
 fputs("ABCDEFGHIJKLMNOPQRSTUVWXYZ", fd);
 printf("In temp.txt after fputs, we're at the %ld position.\n", ftell(fd));
 fgets(string, 100, fd);
 printf("fgets read %s\n\n", string);
 rewind(fd);
 printf("In temp.txt after rewind, we're at the %ld position.\n", ftell(fd));
 fgets(string, 100, fd);
 printf("fgets read %s\n\n", string);
 rewind(fd);
 printf("In temp.txt after second rewind, we're at the %ld position.\n", ftell(fd));
 if (fgets(string, 6, fd) != NULL)
 printf("After running fgets, the first 5 characters are: %s\n\n", string);
 printf("In temp.txt after fgets, we're at the %ld position.\n", ftell(fd));
 printf("This is the next character we see: %c\n\n", fgetc(fd));

fseek(fd, -6, SEEK_END);
 printf("In temp.txt after second fseek, we're at the %ld
 position.\n", ftell(fd));
 if (fgets(string, 6, fd) != NULL)
 printf("Last 5 characters are: %s\n", string);
 fclose(fd);
}

john@oho:~$ gcc stdio.c; a.out
In temp.txt after fprintf, we're at the 26 position.
fgets read G•  Garbage is read in.

In temp.txt after rewind, we're at the 0 position.
fgets read ABCDEFGHIJKLMNOPQRSTUVWXYZ

In temp.txt after second rewind, we're at the 0 position.
After running fgets, the first 5 characters are: ABCDE

In temp.txt after fgets, we're at the 5 position.
This is the next character we see: F

In temp.txt after second fseek, we're at the 20 position.
Last 5 characters are: UVWXY

stdio.h – Using fscanf and fprintf

COMP-232 Programming Languages 29

#include <stdio.h>
int main()
{
 char ch;
 FILE *fd;
 char string[50];

 if ((fd = fopen("temp.txt", "w+")) == NULL) {
 printf("ERROR: Cannot open temp.txt for write.\n");
 return 1;
 }
 fprintf(fd, "%s", "ABCDEFGHIJKLMNOPQRSTUVWXYZ");
 printf("In temp.txt after fprintf, we're at the %ld position.\n", ftell(fd));
 fscanf(fd, "%s", string); // This will read in garbage.
 printf("fscanf read %s\n\n", string);
 rewind(fd);
 printf("In temp.txt after rewind, we're at the %ld position.\n", ftell(fd));
 fscanf(fd, "%s", string);
 printf("fscanf read %s\n\n", string);
 rewind(fd);

 printf("In temp.txt after second rewind, we're at the %ld position.\n", ftell(fd));
 fscanf(fd, "%5c", string);
 string[6] = '\0';
 printf("After running fscanf, the first 5 characters are: %s\n\n", string);
 printf("In temp.txt after fscanf, we're at the %ld position.\n", ftell(fd));
 fscanf(fd, "%c", &ch);
 printf("This is the next character we see: %c\n\n", ch);

fseek(fd, -6, SEEK_END);

 printf("In temp.txt after second fseek, we're at the %ld position.\n", ftell(fd));
 fscanf(fd, "%5c", string);
 string[6] = '\0';
 printf("Last 5 characters are: %s\n", string);
 fclose(fd);
}

john@oho:~$ gcc stdio.c; a.out
In temp.txt after fputs, we're at the 26 position.
fgets read •

In temp.txt after rewind, we're at the 0 position.
fgets read ABCDEFGHIJKLMNOPQRSTUVWXYZ

In temp.txt after second rewind, we're at the 0 position.
After running fgets, the first 5 characters are: ABCDE

In temp.txt after fgets, we're at the 5 position.
This is the next character we see: F

In temp.txt after second fseek, we're at the 20 position.
Last 5 characters are: UVWXY

	Slide 1: stdio.h – Standard I/O Library An Advanced Introduction to Unix/C Programming
	Slide 2: C Reserved Keywords
	Slide 3: Library Calls
	Slide 4: C Library Functions
	Slide 5: /usr/include Header Files
	Slide 6: stdio.h Library Calls
	Slide 7: /usr/include/stdio.h
	Slide 8: man Command
	Slide 9: Function Prototypes
	Slide 10: Function Prototype Examples
	Slide 11: Function Prototype Examples
	Slide 12: Function Prototypes Example
	Slide 13: Function Prototype Example
	Slide 14: Function Prototype Example
	Slide 15: Function Prototype Example
	Slide 16: But why use size_t instead of just int?
	Slide 17: Standard I/O Streams
	Slide 18: #include <stdio.h>
	Slide 19: stdio.h
	Slide 20: stdio.h
	Slide 21: stdio.h
	Slide 22: stdio.h
	Slide 23: errno.h – fopen RETURN VALUES
	Slide 24: errno Example
	Slide 25: errno.h
	Slide 26: errno.h – Checking errno
	Slide 27: fseek
	Slide 28: stdio.h – Using fputs, fgets, and fgetc
	Slide 29: stdio.h – Using fscanf and fprintf

